

Home Search Collections Journals About Contact us My IOPscience

A new kinetic model for non-equilibrium grain boundary segregation

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1991 J. Phys.: Condens. Matter 3 609 (http://iopscience.iop.org/0953-8984/3/5/009)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.151 The article was downloaded on 11/05/2010 at 07:05

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A new kinetic model for non-equilibrium grain boundary segregation

Cai Wei-ping

Material Department, Wuhan Iron and Steel University, Wuhan, Hubei, People's Republic of China

Received 19 March 1990

Abstract. We propose a new kinetic model for non-equilibrium grain boundary segregation. The model is based on three assumptions: that non-equilibrium grain boundary segregation is caused by diffusion of solute-vacancy complexes to the grain boundary; that the grain boundary is a sink for the complexes; and that the grain boundary and grain dimensions are sufficiently large.

Non-equilibrium segregation to grain boundaries and its quantification have been investigated previously [1-5]. Here, a new kinetic model for non-equilibrium grain boundary segregation is advanced, which is based on the following assumptions:

(i) non-equilibrium grain boundary segregation is caused by the diffusion of solutevacancy complexes to the grain boundary;

(ii) the grain boundary is the sink of the complexes;

(iii) the grain boundary is of a certain thickness and grains are large enough.

When an alloy is subjected to solid solution treatment at the temperature T_0 , the solute equilibrium concentration C_{gb} in the grain boundary can be expressed as [6]

$$C_{\rm gb}(T_{\theta}) = C_{\rm g} \exp(\Delta H/kT_0) \tag{1}$$

where C_g is the solute concentration in the lattice, ΔH is the free energy difference between a solute atom in the lattice and in the grain boundary and k is Boltzmann's constant. In the lattice the equilibrium concentration of the complexes C_{c0} is given by

$$C_{\rm c0}(T_0) = K_{\rm c}K_{\rm v}C_{\rm g}\exp((E_{\rm b} - E_{\rm f})/kT_0)$$
⁽²⁾

in which K_c is a geometrical constant related to complexes, K_v is another geometrical constant related to vacancies, and E_b and E_f are the thermodynamic free energies of vacancy-solute binding and of vacancy formation, respectively. If the alloy cools from T_0 to T_1 instantaneously and is held at T_1 , the diffusion of the complexes in the graingrain boundary will take place (see figure 1). The diffusion equation of the complexes

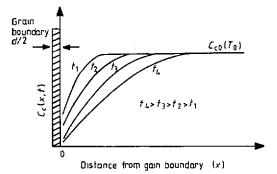


Figure 1. Schematic diagram of the complex concentration change with distance from the grain boundary after different holding times because of the diffusion to the grain boundary. d is the thickness of the grain boundary.

can be written [7]

$$D_{c} \partial^{2} C_{c}(x,t) / \partial x^{2} = \partial C_{c}(x,t) / \partial t$$
(3)

with the restrictions:

$$C_{c}(x = 0, t) = 0$$

 $C_{c}(x, t = 0) = C_{c0}(T_{0})$

where D_c is the diffusion coefficient of the complexes, $C_c(x, t)$ the complex concentration in lattice and t the holding time at T_1 . Equation (3) is the classic diffusion equation. We have the solution

$$C_{\rm c}(x,t) = C_{\rm c0}(T_0) \operatorname{erf}(x/2\sqrt{D_{\rm c}t}).$$
(4)

When the alloy is held at T_1 for the time t_1 , we have

$$\Delta C_{\rm gb}(t_1) = (2/d)N(t_1) \tag{5}$$

in which $\Delta C_{gb}(t_1)$ is the increment of the solute concentration in the grain boundary due to non-equilibrium segregation after holding time t_1 ; d is the grain boundary thickness and $N(t_1)$ is the number of complexes diffusing into unit grain boundary area within a holding time t_1 . According to the Fick diffusion equation, equation (5) is changed into

$$\Delta C_{\rm gb}(t_1) = (2D_{\rm c}/d) \int_0^{t_1} \partial C_{\rm c}(x,t)/\partial x|_{x=0} \,\mathrm{d}t. \tag{6}$$

From equation (4) we have

$$\partial C_{\rm c}(x,t)/\partial x|_{x=0} = \bar{C}_{\rm c0}(T_0)/\sqrt{D_{\rm c}t}.$$
(7)

Then

$$\Delta C_{\rm gb}(t_1) = 4\sqrt{D_{\rm c}/\pi} C_{\rm c0}(T_0)\sqrt{t_1/d}$$
(8)

$$C_{\rm gb}(T_1, t) = C_{\rm gb}(T_0) + \Delta C_{\rm gb}(t) \qquad (t < t_{\rm c})$$
(9)

where $C_{gb}(T_1, t)$ is the solute concentration in the grain boundary at T_1 , and t_c is the critical holding time; when $t > t_c$, C_{gh} will be greater than the grain boundary equilibrium concentration and solute atoms in the grain boundary will diffuse back to the grain centre

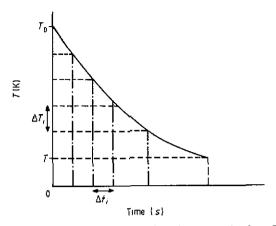


Figure 2. Schematic diagram of continuous cooling from T_0 to T.

during the continuity of complex diffusion to the grain boundary, which means that desegregation occurs.

When the alloy cools continuously from T_0 to T at a rate V(T), we can divide the temperature range and time into N intervals (see figure 2). Each small interval can be considered an isothermal process. For the *i*th interval

$$\Delta_i C_{\rm gb}(T_0 - i\Delta T) = (2/d) \int_0^{\Delta t_i} \partial C_{\rm c}(x,t) / \partial x \big|_{x=0} D_{\rm c}(T_0 - i\Delta T) \,\mathrm{d}t \qquad (10)$$

in which $D_c(T_0 - i\Delta T)$ is the diffusion coefficient of the complexes at the temperature $T_0 - i\Delta T$. So we have the increment of the solute concentration in the grain boundary at the temperature T:

$$\Delta C_{\rm gb}(T) \doteq \sum_{i=1}^{N} \Delta_i C_{\rm gb}(T_0 - i\Delta T) \tag{11}$$

where $N = (T_0 - T)/\Delta T$. When $\Delta t_i \rightarrow 0$

$$\lim_{\Delta t_r \to 0} \int_0^{\Delta t_i} \partial C_{\rm c}(x,t) / \partial x |_{x=0} \, \mathrm{d}t = -\partial C_{\rm c}(x,t) / \partial x |_{x=0} \, \mathrm{d}T / V$$

in which dt = -dT/V(T). So

$$\Delta C_{gb}(T) = -\lim_{N \to \infty} \sum_{i=1}^{N} (2D_c/d) \,\partial C_c(x, t) / \partial x \Big|_{x=0} \,\mathrm{d}T/V$$

$$= -\int_{T_0}^{T} (2D_c/d) \,\partial C_c(x, t) / \partial x \Big|_{x=0} \,\mathrm{d}T/V$$

$$= -\int_{T_0}^{T} (2/d) \sqrt{\frac{D_c}{\pi}} \left(C_{c0}(T_0) / V \right) \,\mathrm{d}T/\sqrt{t}$$
(12a)

Letter to the Editor

if V(T) is a constant independent of $T, t = (T_0 - T)/V$ and

$$\Delta C_{gb}(T) = -\left[2C_{c0}(T_0)/(d\sqrt{\pi V})\right] \int_{T_0}^T \sqrt{D_c/(T_0 - T)} \, \mathrm{d}T$$
(12b)

$$C_{\rm gb}(T) = C_{\rm gb}(T_0) + \Delta C_{\rm gb}(T).$$
 (13)

Combining the investigation of rare earth segregation in Al [8], and the related binding energy and solubility data [9], according to equation (9) for the isothermal process and equation (13) for continuous cooling, reasonable agreement between the experimental data and calculated results has been obtained for the non-equilibrium grain boundary segregation of rare earth atoms in aluminium, which we intend to present, in detail, in a later paper.

References

- [1] Aust KT, Hanneman RE, Niessen P and Westbrook JH 1968 Acta Metall. 16 291
- [2] Williams T M, Stoneham A M and Harries D R 1976 Met. Sci. 10 14
- [3] Harries D R and Marwick A D 1980 Phil. Trans. R. Soc. A 295 197
- [4] Faulkner R G 1981 J. Mater. Sci. 16 373
- [5] Doig P and Flewitt P E J 1981 Acta Metall. 29 1831
- [6] McLean D 1957 Grain Boundaries in Metals (Oxford: Clarendon)
- [7] Verhoeven J D 1975 Fundamentals of Physical Metallurgy (New York: Wiley)

[8] Cai Wei-ping 1990 J. Mater. Sci. submitted

[9] Cai Wei-ping 1990 J. Mater. Sci. submitted

612